INFLUENCE OF STREAM VORTICITY ON FRICTION AND
HEAT EXCHANGE IN APPLICATION TO THE CASE OF A
SUPERSONIC JET IMPINGING ON AN OBSTACLE

I. A, Belov, I. P, Ginzburg, UDC 533.601.15:536.244
and L. I. Shub

The flow in the neighborhood of the stagnation point of a stationary plane stream of viscous
incompressible fluid with harmonic components superposed on the velocity components is
investigated, Such a flow corresponds to a stream containing periodic eddies perpendicular
to the flow plane, The results of the investigation can be applied to estimate thermal fluxes,

Let us consider a stationary plane stream of viscous incompressible fluid in which stationary periodic
eddies oriented perpendicularly to the flow plane {07 (the ¢ axis) are introduced, The flow is bounded by
the n = 0 plane with the stagnation point £ = n =0,

Let us utilize the following differential equations:

the equation of vortex transport in a projection on the ¢ axis

0Q 15,9 oQ 0*Q
z v zZ . z z , 1
“ Tox o d, ax? + ay? o
where
z___avx__dvy _a_w; v:__alp_’
dy ax ¥ oy v dx
the energy equation (without taking account of dissipation)
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The following dimensionless variables are utilized here
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It is known that under the boundary conditions
Uy (x’ O) = vy (x! 0) = T(x’ O) =0:
_O0y(%, ) _ @

U (%, ) = x5 —1; T(x, 00)=1

dy

the velocity components for a stationary viscous fluid flow in the neighborhood of the stagnation point and in
the absence of initial stream pulsations are [3]

Uy = xf’ (y)’ vy = -—f(y)’
where f(y) is found from the solution
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Fig, 1, Harmonic velocity components and temperatures in the expansions (7), (8): 1) £1(1)s 2) f;(i); 3)
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[ o =14 when f(O)=Ff(0)=0; ['(w0)=1
(here and henceforth the prime will denote differentiation with respect to y).

The presence of periodically distributed vortices along the x axis assumes the appearance of har-
monic components for the velocity components at infinity, hence the boundary conditions (4) can be written
as:

y= %L:-l—-EAncosknx; ©)
Y ' n=l1
y=0 T=0, y=oo T=1, (6)

where the Ap in (5) is the dimensionless amplitude of the n~th harmonic component of the free stream, kyp
=27/ Ap is the dimensionless wave number of the n~th component of the periodically distributed vortex (a
quantity reciprocal to the dimensionless wavelength or the vortex dimension corresponding to the n-th har-
monic component of the vortex), on which the conditions ky, > 0; kp = nk; are imposed, where k; = 27 /2,

is the dimensionless wave number of the harmonic of greatest amplitude., As follows from experiments
with supersonic jets impinging along the normal on a flat obstacle within the initial section [1, 2], such a
fundamental harmonic is predominant in the formation of stationary flow near the obstacle. The magnitude
of its wave number is of the order of k; = 1073-107%,

Let us seek the solution of (1)-(3) under the boundary conditions (5), (6) in the form:

-y 1
b= xfo @)+ ¥ —— fa () sinkyx, )
0+ 35,
T=To@) + i 8, (4) cos kyx. @)
n=1

Then the expressions for the velocity components and vortices are written thus:

v, = xf[', + 2 ;1— f,; sin k,x,
n=1 n
v, =—fo— 2 f, cosk,x, 9)
n=1

Q, = xfo = 2 o, sin k,x,

n=|

1 -
= - n_kn nt
On = 7 f (10)

n
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Fig, 2, First and second approximatiox}‘s for the zero
members" of the expansions (7), (8): 1) fo(1)3 2) fo(z); 3)
1 1 1
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Taking account of (8)-(9), we obtain the following boundary conditions for the functions from (5)~(6):

fol0) = fa(0) =0; fo(oo) =1; (11)
0 =10 =0; falw) = Ay 12)
To(0)y=0; Ty(o0)=1; (13)
8, (0)=0; 8, (x)=0. (14)

Let us limit the analysis to an examination of such harmonic components of the velocity components
and vortices for which ky « 1, If (9) is substituted into (1), and terms containing k%l are neglected, then
the expression obtained can be integrated with respect to y. Taking account of the boundary conditions (11),
(12), we obtain

e

215 4 o +1— D (o fo— o o — Ay) xcOS o

+ 2-—1— (Fn = Fo fnt Fufn + Ay) sin ko = E L (Fu fr — P fy — AiAy) sin By cos . 18)
n kn n,i kn

The summation over n in (15) is for such n for which the condition kp <« 1 is still conserved, If known for-
mulas for the series expansions of the functions coskpx and sinkpx in powers of knx are utilized, then taking
into account the ky =nk,, we obtain equality of the two power series in (15). Equating coefficients of identi~
cal powers of k;x, we obtain the following system of (n + 1) equations to determine fo, fpm=1,2,3,,..):

=B o+ 1= X @ fa fifa— fla — 2 — 240+ 3, e £l — Fufy— Ay, 16
n2li2(j—t)
@+ D2G—nn "
a7
Analogously substituting (8), (9) into the energy equation (3), we obtain the following system of (n + 1)
equations to determine Ty, @n(n=1,2,...):

D" o fa ol A) + (@ 4 1) (ofo — o fu 4+ A1 0% = 2+ 1)1 Y N ¢ i —ft—aa)

t=0 n,i

1 T ) ,
™ To + foTo +;(—P?®n + Tof, +fo®,,)=_n2£fn®t ,

(18)
1 ” , , .
g[ Pr 6. + Tofn —/ﬂ,@n -+ 2]'f08n ] n%
i [ . 2+ (- +1 28;2(j-1)
— 2+ 1)1 {f_ f.e, T o #____} (19)
,;ﬂz n @+ D2G—0+ 17! i @ented—any

The system (16), (19) yields 2(n + 1) equations to determine f4> Tgs fn» ®p. The boundary conditions
(11)-(14) are utilized to solve the mentioned system. In application to the case of impingement of a super-
sonic jet on an obstacle when the external stream contains one harmonic component of greatest amplitude,
i.e., for An ~0,n=2,3,..., the practical convergence of the series (7y=(9) is sufficiently rapid, and as
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further computations showed, for an approximate solution it is possible to limit oneself to two terms in the
mentioned series, The summation is hence over i, n = 2 in (16), (18) to determine f,, T, The equations

to determine f;, f,, @, ®, are obtained from (17) and (19) for j equal successively to 1 and 2. It is assumed
Pr = 1.0 in the solution,

The results of the solutions of the equations obtained under the boundary conditions (11)-(14) are pre-
sented in Figs. 1 and 2. The solution is carried out by iteration on an electronic analog computer. The
first approximation for the functions is denoted by the subscript 1, and the second by the subscript 2.

In order to analyze the solution obtained, a graph was constructed of the heat flux and friction stress
distribution along the obstacle in the neighborhood of the stagnation points qw and 7y, referred to the cor-
responding computed quantities obtained for the impingement of an irrotational stream on an obstacle

(@w)Q =0 and (Tw)Q =
( To+ E 6, cos kX >
qw . n
y=0

(qw)9=0 T(;
" |
xfo + Z fnsink,x
Tw — n 'kn .
(T)e=o }‘ \ fo y=0

The results of the computations by the formulas presented are shown in Fig. 3 for values of the am~
plitude and wave number of the fundamental harmonic Ay = 0.5 and k; = 1073, For comparison, results of
an experiment measuring the heat fluxes on an obstacle in the neighborhood of the stagnation point of a
supersonic jet are presented here [1] for M = 2.5; n = 3.0; 7 = 2dg, » = 1.4. As is seen from the compari-~
son, for A; = 0.5 and ky = 1073 the results of the computation are in good agreement with the results of the
experiment,

The following deductions can be made on the basis of the results of the computation:

1, For a fundamental harmonic of amplitude A, = 0.5 the heat flux on an obstacle at the stagnation
point, as computed by the method proposed, will exceed the corresponding quantity for an irrota-
tional stream 4,5-fold. The increase in friction stress on the wall as compared with the corre-
sponding quantity for an irrotational stream is not more than twofold.

2. The heat flux and friction stress vary periodically along the obstacle with approximately the same
period. Alternation of the maximums and minimums of the heat flux and friction stress along the
obstacle indicate the presence of periodically distributed vortices of alternating sign near the wall,
The sign of A, indicates the direction of vortex rotation (for Ay > 0 the first vortex rotates counter-
clockwise).

3. Agreement between the results of computing the heat flux distribution along the obstacle with the
data of experiment is good enough in the domain where the first vortex is located on the obstacle,
As x recedes from the first vortex, the divergence between theory and experiment increases, which
is apparently associated with the more complex nature of the perturbations imposed on the external
stream (Ap #0,n=2,3,...).

NOTATION

Eamy & are the physical coordinates;
X, V, Z are the dimensionless coordinates;
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are the velocity components;

is the stream functi'on;

are the vortex projections on ¢ and z axes;

is the constant in the linear longitudinal stream velocity distribution in the neighborhood
of the stagnation point;

is the temperature;

is the viscosity;

is the Prandtl number;

are the heat flux and friction, respectively, with stream vorticity taken and not taken into
account;

is the Mach number;

is the jet incalculability;

is the distance between nozzle exit and obstacle;

is the nozzle diameter;

is the adiabatic index;

is the wall;

is the inviscid stream;

is the nozzle exit,
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